Identification of clathrin and clathrin adaptors on tubulovesicles of gastric acid secretory (oxyntic) cells.

نویسندگان

  • Curtis T Okamoto
  • Sherif M Karam
  • Young Y Jeng
  • John G Forte
  • James R Goldenring
چکیده

γ-Adaptin and clathrin heavy chain were identified on tubulovesicles of gastric oxyntic cells with the anti-γ-adaptin monoclonal antibody (MAb) 100/3 and an anti-clathrin heavy chain MAb (MAb 23), respectively. In Western blots, crude gastric microsomes from rabbit and rat and density gradient-purified, H-K-ATPase-rich microsomes from these same species were immunoreactive for γ-adaptin and clathrin. In immunofluorescent labeling of isolated rabbit gastric glands, anti-γ-adaptin and anti-clathrin heavy chain immunoreactivity appeared to be concentrated in oxyntic cells. In primary cultures of rabbit oxyntic cells, the immunocytochemical distribution of γ-adaptin immunoreactivity was similar to that of the tubulovesicular membrane marker in oxyntic cells, the H-K-ATPase. Further biochemical characterization of the tubulovesicular γ-adaptin-containing complex suggested that it has a subunit composition that is typical of that for a clathrin adaptor: in addition to the γ-adaptin subunit, it contains a β-adaptin subunit and other subunits of apparent molecular masses of 50 kDa and 19 kDa. From solubilized gastric microsomes from rabbit, γ-adaptin could be copurified with the major cargo protein of tubulovesicles, the H-K-ATPase. Thus this tubulovesicular coat may bind directly to the H-K-ATPase and may thereby mediate the regulated trafficking of the H-K-ATPase at the apical membrane of the oxyntic cell during the gastric acid secretory cycle. Given the similarities of the regulated trafficking of the H-K-ATPase with recycling of cargo through the apical recycling endosome of many epithelial cells, we propose that tubulovesicular clathrin and adaptors may regulate some part of an apical recycling pathway in other epithelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clathrin in gastric acid secretory (parietal) cells: biochemical characterization and subcellular localization.

Clathrin from H-K-ATPase-rich membranes derived from the tubulovesicular compartment of rabbit and hog gastric acid secretory (parietal) cells was characterized biochemically, and the subcellular localization of membrane-associated clathrin in parietal cells was characterized by immunofluorescence, electron microscopy, and immunoelectron microscopy. Clathrin from H-K- ATPase-rich membranes was ...

متن کامل

Gastric oxyntic cell structure as related to secretory activity.

The oxyntic, or parietal cell has two characteristic membrane systems. The mammalian intracellular canaliculi are specialized networks of narrow channels lined with numerous microvilli. The other common to all oxyntic cells is the tubulovesicles, a system of tubules and vesicles. The tubulovesicular compartment is drastically depleted during maximal gastric acid secretion and this is coincident...

متن کامل

Transcytosis of NgCAM in epithelial cells reflects differential signal recognition on the endocytic and secretory pathways

NgCAM is a cell adhesion molecule that is largely axonal in neurons and apical in epithelia. In Madin-Darby canine kidney cells, NgCAM is targeted to the apical surface by transcytosis, being first inserted into the basolateral domain from which it is internalized and transported to the apical domain. Initial basolateral transport is mediated by a sequence motif (Y(33)RSL) decoded by the AP-1B ...

متن کامل

Hip1r is expressed in gastric parietal cells and is required for tubulovesicle formation and cell survival in mice.

Huntingtin interacting protein 1 related (Hip1r) is an F-actin- and clathrin-binding protein involved in vesicular trafficking. In this study, we demonstrate that Hip1r is abundantly expressed in the gastric parietal cell, predominantly localizing with F-actin to canalicular membranes. Hip1r may provide a critical function in vivo, as demonstrated by extensive changes to parietal cells and the ...

متن کامل

AP-4, a novel protein complex related to clathrin adaptors.

Here we report the identification and characterization of AP-4, a novel protein complex related to the heterotetrameric AP-1, AP-2, and AP-3 adaptors that mediate protein sorting in the endocytic and late secretory pathways. The key to the identification of this complex was the cloning and sequencing of two widely expressed, mammalian cDNAs encoding new homologs of the adaptor beta and sigma su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 274 4  شماره 

صفحات  -

تاریخ انتشار 1998